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A systematic derivation of the energy-flux operator for a three-dimensional lattice is given. The treatment 
is based on the general expressions for the energy flux which are valid for all phases of matter; a short 
derivation of these expressions, making no restrictions to two-body forces, is presented. The average energy 
flux is transformed to the phonon representation, and it is shown that the diagonal contribution from the 
harmonic forces has the familiar form Sks iVks#coksVks. There are, in addition, nondiagonal contributions to 
the energy flux, even in the harmonic approximation. The significance of these corrections is discussed. The 
contributions to the average flux from the anharmonic forces and from lattice imperfections are also treated. 
Finally, the problem of forming wave packets of the plane-wave normal modes to obtain an expression 
for the local energy flux is considered. 

1. INTRODUCTION 

THE theory for the lattice contribution to the 
thermal conductivity of solids is usually based on 

the Boltzmann equation for phonons.1-3 In this theory, 
which was first presented by Peierls,4 and also in the 
more modern approach utilizing correlation functions,5'6 

it is necessary to know the functional dependence of the 
energy-flux operator7 on the dynamical variables of the 
system. For a lattice these are the creation and annihila
tion operators for phonons. The form usually used for 
the flux in a lattice is1-3 

S= V'1 S A7kS^coksvks 
ks 

(i.D 

where NkS, coks and vks are, respectively, the number 
operator, frequency, and group velocity of the plane-
wave normal mode with wave vector k and polarization 
index s, and V is the volume of the system. This result 
was obtained by Peierls4 who considered in detail a 
linear chain with nearest neighbor interactions and then 
generalized to three dimensions. The validity of (1.1) is 
generally accepted, although no rigorous derivation of 
it has been given for the three-dimensional case. 

Here a systematic derivation of the energy-flux 
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operator for three-dimensional lattices is given, and the 
limitations of, and corrections to, (1.1) are discussed. 
The treatment is based on the general expressions which 
give the energy flux in terms of the particle variables 
and which are valid for all phases of matter.6-8-9 For 
completness a derivation of these formulas, making no 
restriction to two-body forces, is presented in Sec. 2. 
The results are then transformed to the phonon repre
sentation and in Sec. 3 the usual expression (1.1) is 
obtained as the diagonal part of the harmonic contribu
tion to the average energy flux. Nondiagonal contribu
tions to the flux from the harmonic Hamiltonian are also 
obtained. In Sec. 4 the contribution to the energy 
flux from the cubic part of the anharmonic Hamiltonian 
is calculated, and the effects of lattice imperfections are 
discussed. The problem of forming wave packets of the 
plane-wave normal modes in order to describe a local 
property,3 in this case the local energy flux, is treated 
in Sec. 5. 

The corrections to expression (1.1) for the energy flux 
give rise to changes in the formulas determining the 
thermal conductivity. A discussion of these^changes will 
be given elsewhere.10 
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2. GENERAL EXPRESSIONS FOR THE 
ENERGY FLUX 

The local energy-flux operator s(x) can be obtained by 
requiring that it satisfy the equation for energy 
conservation14 

#(x)+V-s(x) = 0, (2.1) 

where H(x) is related to the energy-density operator 
H(x) and the Hamiltonian of the system H by 

6(x)=(ih)-^H(x),H2. (2.2) 

On combining these expressions one gets 

V.s(x)=(;A)[#(x) ,#] . (2.3) 

In this section the above result is used to obtain the 
expression giving the energy flux as a function of particle 
variables.15 

To proceed further, explicit expressions for the 
Hamiltonian and energy density are needed; it is 
desirable that they be defined as generally as possible. 
Here a Hamiltonian is assumed of the form 

H=Z(~+V), (2.4) 

where p4 is the momentum, mi is the mass, Vi is the 
potential energy associated with the ith particle, and 
the summation is over all the particles in the system. It 
is assumed that the Vi are functions of the position 
variables q4 only; each Vi depends on the position 
variables for all the particles with which particle i 
interacts. The separation of the potential energy of the 
system into the parts Vi is somewhat arbitrary, but a 
natural choice usually suggests itself in any given 
problem [see, e.g., (3.18), (4.7), and (4.19)]. 

When treating the transport properties of a system 
one uses variables which describe the average properties 
of small regions containing large numbers of particles. 
The linear dimensions of these regions will be charac
terized here by I. It is convenient to reflect this average 
nature of the macroscopic variables in the choice of the 
microscopic energy density operator by defining H(x) as 

H(x) = iEJA(x-q»)(!^+FiYfH.c.j , (2.5) 

where the function A(x—q4) is defined to be negligibly 
small when |x— q*|>/ and large but finite when 
| x—q |̂ </. (The notation H.c. indicates that the Her-
mitian conjugate is to be added.) Since the integral of 
the energy density over the volume of the system must 

14 The operator H(x) is defined so that d{H(x))/dt = {H(x)), 
where ( ) indicates an ensemble average. The macroscopic con
servation law analogous to (2.1) is d{H(x))/dt+V• (s(x))=0. 

16 The classical analogs of the results obtained in this section can 
be obtained by replacing (i/h)[pia,Vj2 by dVj/dq^. 

equal the total energy H, it is stipulated that 

/<foA(x-q<)=l. (2.6) 

One desires for calculational purposes that the function 
A(x—q*) be mathematically well behaved; a possible 
choice is16 

A(x-q;) = 7r-3^-3
 e x p [ - | x - q , | 2 / / 2 ] . (2.7) 

The momentum and position operators pi and q* 
obey the commutation relations 

and (2.8) 

where superscripts label vector components, and 8ab 

and dij are Kronecker-5 functions. Using these and the 
forms for H and #(x) assumed above, one can show that 

n ij [ a \in 2mj 

+— - [A(x-q^ / ] )[—+Vt) 
Imjih / \2mi J 

+ ( A ( x - q , ) - A ( x - q y ) ) T r — , F y ] j + H . c . (2.9) 
vh\-2mi J J 

It follows from the commutation relations, e.g., by 
using the representation where pf= (h/i)d/dqia, that 

(i/*)[A(x-qt-), pf]= 5<ydA(x-q<)/d*a. (2.10) 

Also, making a Taylor series expansion of A(x—q4), one 
obtains 

A(x-qy)-A(x-q<) = EoCd(ff.-a-gya)/d^] 

x / 1 + . . . + ^ ^ E f e , _ g / ) . . . 

d d \ 
XiqS-qf)— )A(x-q, ) , (2.11) 

dxb dxr/ 

where there are s summation indices b • • • r. Note that 
d/dxa operates on the function A(x— q^ only. The sub
stitution of formulas (2.10) and (2.11) into (2.9) 
allows one to factor the operator d/dxa to the left of the 
resulting expression, which then has the form 

(V*)[i5r(x),^] = Ea ds«(x)/dxa (2.3) 
16 M. S. Green [J. Chem. Phys. 22, 399 (1954)] and H. Mori, 

I. Oppenheim, and J. Ross (see Ref. 6; p. 281) suggest an alter
native choice: 

A(x—q;) =Z,~3 2 k exp[—ik- (x—q»)], 

where k1, k2, ¥<2ir/l and L characterizes the linear dimensions of 
the system. 
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with 

s(x) = - £ A ( x - q , ) — + — A ( x - q , ) ) ( — +VA 
2 [ i \ 2nti 2mt J \2w< J 

a\ 2! b dxb J 

X(qi-qj)-\—,Fyl|+H.c. (2.12) 
imJlmi J J 

17 By assuming two-body central forces and that the local mean 
velocity is zero, one can show that the classical analog of (2.12) is 
equivalent to Irving and Kirkwood's (see Ref. 8) Eqs. (6.20), 
(6.21), and (6.22). 

18 The integration may be taken over all space as the integrand 
is zero outside of the system. 

19 By assuming two-body central forces the classical analog of 
(2.14) becomes equivalent to Eisenschitz's (see Ref. 9) Eq. (1.13). 

where S° is independent of the perturbation and where, 
as is indicated, XS' and A2S" are proportional to X and X2. 
In this section the harmonic contribution to the average 
flux S° is expressed as a function of the creation and 
annihilation operators for phonons; the contributions 
AS' and X2S" are discussed in Sec. 4. For simplicity only 
a cubic lattice with one atom per unit cell is considered, 
but this restriction is not fundamental, and the tech
niques utilized also apply to more complex structures. 

Introduction of Phonons 

or 
mco^dss^j: eks

a(E A"b(xiy*~t)ei„'b, (3.9). 
ab i 

20 p o r general discussions see, e.g., M. Born and K. Huang, 
Dynamical Theory of Lattices (Oxford University Press, London, 
1954), or J. M. Ziman, Electrons and Phonons (Oxford University 
Press, London, 1962). 

This is the desired expression for the local energy-flux 
operator.17 From the above derivation it is apparent 
that the conservation equation (2.1) is simply a re
writing of Eq. (2.2) for H(x). 

For determining the thermal conductivity5 one needs 
an expression for the average energy flux S which is 
denned as 

- / • 

S=7- 1 /do8(x) > (2.13) 

where the integration is over the entire volume of the 
system.18 Now since A(x—q») is defined so that it is zero 
except in a small region, the volume integrals of the 
derivatives of A(x— q*) are negligible. Consequently, the 
integration (2.13) yields19 

1 1 f VifPC \ 

S=— E-(—+vA 
2V{ i mMnti J 1 

+L(q;-q;H —Pi 
ifiL2m i —' 

+H.c. (2.14) 

Although the interest here is in solids, the above 
formulas for s(x) and S are also valid for gases and 
liquids. In particular, the first terms (those containing 
the product of three momentum operators) give the 
significant contribution to the flux in a low-density gas. 

3. THE HARMONIC ENERGY FLUX 

The Hamiltonian will be written as 

H=H°+\H', (3.1) 

where H° is the harmonic Hamiltonian for a lattice, 
\H' describes the effects of imperfections and an-
harmonic forces, and X characterizes the strength of this 
perturbation. With this and an analogous separation of 
the energy density, the energy-flux operator can be 
expressed as 

S = S ° + A S / + \ 2 S / ' , (3.2) 

Before proceeding, the notation to be used for the 
phonon description of lattice dynamics will be 
introduced.20 

The momentum and position operators for the ith 
particle in a lattice will be designated P(x») and Q(x4), 
respectively, where Q (x») measures the displacement of 
the ith particle from its equilibrium position (or lattice 
site) X{. These operators are related to the p4- and q4- in 
the previous section by 

P(x»-) = p» and Q(x») = q»—x<, (33) 

since it was implicit that the q̂  were measured from a 
common origin. 

The harmonic part of the Hamiltonian is written as 

1 
#° = — ZP&i)2 

2m i 

+* E E ^(x-xy)e«(Xi)e»(xy), (3.4) 
ij ab 

where m is the mass of the particles, and the coefficients 
Aab(Xi) satisfy the relations 

Aba(-Xi) = Aab(xi) = Aba(xi). (3.5) 

The harmonic Hamiltonian is expressible as a sum of 
independent harmonic oscillator Hamiltonians by using 
the transformation 

P(x,) = ^ - 1 / 2 E^ .ek . e i k ' J 

ks 

Q(xi) = N-MZqk;ekse
i*-

(3.6) 

where N is the total number of particles in the system, 
qksl is the Hermitian conjugate of qksj and where 

pks=—p-^ and qks=—q-ks^ (3.7) 

The polarization vectors ekS and the frequencies coks are 
determined by 

wcoks
2ek/ = i : ( E Aab(xi)e

ik^)eks
b, (3.8) 

6 i 



E N E R G Y - F L U X O P E R A T O R F O R L A T T I C E 171 

and The quantity S3° is 

ek.*ek»' = 5„/; e k s = — e_ks; coks=co_ks. (3.10) i r p( x . ) rp( X i )2 -, 

The properties (3.5) allow one to replace e ik 'Xi with 3 2 F 1 * m L 2m J 
cosk«x* in (3.8) and (3.9). Periodic boundary conditions 
are imposed to determine the allowed values of k. These 1 / 1 
values are such that + — £ [ Q ( X i ) - Q ( x y ) ] E ( P a (x , - ) - [P a (x ; ) ,F(x y ) ] 

2m ii a \ in 
X > k ' x * = 7VAk, (3.11) 

+ - [ P » ( x , ) , F ( x y ) ] P « ( x , ) ) 1 + H . c . (3.19) 
ift / J where Ak equals 1 when k = 0 , K (where K is a member 

of the reciprocal lattice) and is zero otherwise. 
The creation and annihilation operators for phonons, A l i e Quadratic Pa r t a2 

akst and aks respectively, are introduced through the N o w consider the term S2°. Using the commutation 
transformation relations for the P(x,) and Q(x<) one obtains for x ^ x y 

P*s= - f ( iw*« k . ) 1 / 2 (a k .+a^ k . t ) , ^ (i*)-1[P°(x t-),F(x i)]= - f E ^6(x t~x,-)Q*(xy). (3.20) 
^ks

t==(V2Wcoks)
1/2(aks—fl-k.t), ' & 

where akst and aks satisfy the commutation relations T h e introduction of this into (3.17) yields 

r<zks,#k's'n=£kk'5SS'. (3.13) —i 
S2°= E I i a H x J x w P « ( x w + X i ) e & ( x , ) , (3.21) 

The introduction of akJ and aks into H° yields 2m F /« «& 

S'0 = Z!(A r
k s+4)^a;ks , (3.14) where xm=x*~-xy. The introduction of the normal 

ks coordinates of .0"° gives 

where iV k s =a k s ta k s is interpreted as the number of ^ 
phonons in the ksth normal mode. The matrix repre- S2° = ]C pkSq-ks' X) ^kS

a 

sentation which diagonalizes the operators Nks also 2mV ***' ab 
diagonalizes H° and will be referred to as the phonon , _ A ,, . 
representation. X C ^ W w 4 - ^ . (3.22) 

The Contribution S° At this point it is convenient to introduce a quantity 

The transformation (3.3) implies that ^ 

* - Q i = Q ( * i ) - Q ( x / ) + x , - x y . (3.15) Vkss ' = 2 M ( c o k s W k s 0 ^ 5 e k S a 

Then since the potential energy part of H° is a quadratic X f ! T ^ o 6 ( x )x eik'Xm)e >h (3 23) 
function of the Q(x*), it follows from (2.14) that m 

S 0 =S 2 °+S 3
0 , (3.16) 

which has the units of velocity. From this and (3.3) it 
where Sf is a quadratic function of the P ( * ) and Q(x,) f o l l o w s t h a t V k " ' i s r e a l a n d t h a t 

and S3° is a cubic function. The term S2° is ___ _ _. (1 OA\ 
vkss ' — vks'S— — v_k*'». (3.z4) 

§ 2 o = y"(x — x-)5zl-Pa(xt)—r^a(xi) F(x)~| - ^ o w ^ w ^ ^ e s n o w n t n a t VkS8(^ = ^ ) is equal to the 
2mV a l J a \ % ifi * ' ° group velocity Vkcoks. By considering coks as defined by 

(3.9) as a continuous function of the wave vector k and 
, l r T l , w r / N- , J /„ ,*N differentiating with respect to ¥ (the Zth vector com-

+ML ^ ( X j ) ] ( X i ) t ' ( } Ponent of k), one obtains 

where 7(xy), corresponding to the term V, in (2.14), is 2mbss>^~ =i £ ek.,a(i; 4«*(xm)*mVk-*»)ek..» 

f(xy) = i Z E ^ * ' ( x y - x . ) g » ( x y ) g « ( x . ) . (3.18) 3*' a6 

rru- u • t MI \ <-• c ^ • 4. 4-u t + £ ( Wwk8 '2e^''*+E « w k s
2 e k s » — — 1 , ( 3 . 2 5 ) 

This choice for F(x») satisfies the requirement that a\d¥/ *> \ d¥ J 
12i V(xi) be equal to the potential part of the harmonic 
Hamiltonian. where (3.8) has been used to simplify the last two terms. 
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Since the polarization vector ek* is of unit length, any 
infinitesimal change in eks resulting from a change in k 
must be perpendicular to it, and thus 

Za(deks"/dkl)eks«=0. (3.26) 

With this relation it follows from a comparison of (3.23) 
and (3.25) with s=s' that 

duks/dkl = vkss
l^vks

l, (3.27) 

where vkss
l has been written as vks

l for brevity. Thus one 
sees that vks is indeed equal to the group velocity. 

Another useful result is obtained from (3.25) for s^s/ 

in those cases where the frequencies c*>k8 and o)ks> happen 
to coincide. Rewriting the first term on the right of 
(3.25) with the aid of (3.23) and taking ooks=ooks>, one 
obtains 

- t w l = i « k . [ 3 ( £ « ek«eks>
a)/d¥~\. (3.28) 

Since ek*"ek8' = 0 when s^s', it follows that VkSS' is zero 
when o)ks=o)ksr. 

The final expression for S2° is obtained by introducing 
Vkss' and the creation and annihilation operators into 
Eq. (3.22) to obtain 

S2°=S2 ,d°+S2 ,n d
0 , (3.29) 

with 

S2,d°= V~l E Nks%uksvks, (3.30) 

1 
S2,nd°= E (<»k.+a-k.t) 

2<V kss',s?£s' 

X (tf-kS' — a-ksJ)tiuksvksS', (3.31) 

and Nks=aks^aks. The subscripts d and nd indicate that 
S2,„d° and S2,nd° are respectively, diagonal and non-
diagonal matrices in the phonon representation. (Since 
S3° is a cubic function of the aks

f and aks, it is necessarily 
nondiagonal.) One now has the important result that 
the usual expression for the energy-flux operator in a 
lattice, that is, Eq. (3.30) or (1.1) is just the diagonal 
part of the harmonic contribution. 

The significance of the term S2,nd° is most easily 
understood in the classical limit. Expressing (3.31) in 
terms of the normal mode variables pks and qks^ one gets 

S2,nd° = i E pksq~ksf1[(03ks0)ks')
m\kss' , (3.32) 

and the classical limit is obtained by simply treating 
pks and q-ks^ as classical variables (with the Hermitian 
conjugate becoming a complex conjugate). The variables 
pks and ^-ks'1" are then rapidly oscillating functions of 
time with frequencies coks and coks'. As uks is unequal 
to cok*' for those terms with ST^S' and VkSS '^0 [see 
(3.28)], it follows that (3.32) is made up of oscillating 
terms with frequencies which are the sums and differ
ences of o)k8 and coks'. As a result, when the flux is 
averaged over long periods of time (i.e., over many 

periods of oscillation), the contribution of S2)nd° to the 
transport of energy is negligible compared to that of the 
(classically time-independent) contribution S 2 , / . (It is 
interesting to note that terms analogous to S2,nd° also 
exist in the expression for the flux for an isotropic 
elastic medium.21) 

The Cubic Pa r t S30 

The term S30 is easily expressed as a function of the 
pks and qk8 by applying the transformation (3.6) to 
Eq. (3.19) for S3°. The result is 

1 
S3°= E ek s(ek 'S ' ek"S")Ak+k'+k" 

4VN1/2 kk'k",ss's" 

lpkspk's'pk"s" 

X J h^kS#k's'+gk''S ' 'W''s''2 

+qks
iqk>s>fpk>>s>> (o>k"S"2-cok'S'2) + H . c . , (3.33) 

where (3.8) has been used to introduce wks
2. This is 

easily written as a function of akJ and ak8 by using 
transformation (3.12). 

The significance of S30 is most readily seen by inspect
ing (3.19). The terms in (3.19) containing products of 
three P(x;)'s correspond to Irving and Kirkwood's 
"kinetic energy" contribution to the flux.8 The terms 
F(xi)V(Xi)/m describe the transport at the velocity 
f(xi)/m of the potential energy Vfe). The terms con
taining the difference Q(x,) — Q(xy) are corrections to 
S2° arising from the fact that the interparticle forces do 
not transmit energy between the lattice sites X; and x3; 
but between the actual positions of the particles which 
are displaced from x* and xy by Q(xJ and Q(xy). 

If the energy {p?/2m)+Vi were associated with the 
lattice site x* instead of with the actual position of the 
particle q*=Q(xi)+x», the contribution S2° would be 
obtained, but not S30. This is easily seen by retracing 
the calculations of Sec. 2 with A(x—qt-) replaced by 
A(x— Xi). (Note that since x* is a number it commutes 
with the operator pt-.) Thus, if the particle displace
ments are small compared to the lattice spacing, the 
contribution of S30 to the flux will be small compared to 
that of S2°. This will actually be the case except at 
elevated temperatures. 

4. PERTURBATION CONTRIBUTION TO 
THE ENERGY FLUX 

The contribution to the average energy flux from the 
anharmonic forces and lattice imperfections will now be 
treated. The perturbation due to the anharmonic forces 

21 R. J. Hardy, Ph.D. thesis, Lehigh University (University 
Microfilms, 1962), p. 96. 
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that is considered is where S3 ' and S4 ' are, respectively, cubic and quartic 
functions of the P(x4) and Q(x^). 

X ^ . - i y y R . K X . I . 1 )0«(x)Ob(x)0*(x ) (41) The quantity \ S / w i l l be treated first. By using (4.7) 
*i .- X. ix„x„xm ;^ \xt)u \x,)u [xm), ^ . i ; a n d ^ c o m m u t a t i o n r e l a t ions it can be shown for 
3 ! ijm abc 

Xi^Xj t h a t 

which is the cubic term in the potential energy expan- /•Ay-irpf v w ( \1— i v V Ra&c/ 
sion. The effects of imperfections are not included in ^ L^ W >AK3(xy)J- - s L L ^ c(x,-,xy,xm) 
XF3, so that one has 

Bahc(xhxhxm) = B«hc{0, xj-Xi, xm-Xi). (4.2) 

m abc 

X(P a(x,)e&(xy)e c(xw)+e6(xy)O c(x^)P a(x,)) . (4.9) 

Multiplying this result by (2w)~1(x,—xy), summing 
The correction to the kinetic energy arising from the over i and j , and introducing the creation and annihila-
presence of impurities, isotopes, etc., is tion operators, one obtains 

1 hnti 1 _ ^ f / A8«k. \1 / 2 

xr= E ^(x*)2, (4.3) x s 3 ' = — E Bk8ik^fk»./' - * ( 
2w * w+5Wi 2F kk'k",**'*" 1 \8^cok'S'COk"S"/ 

where 
§mi=zm.—m^ (4,4) X (aks+a-k/Xflk'*' —a-k'*'1") 

X(ak-./ ,-flL.k»." t) + H . c , (4.10) 
where mi is the actual mass of particle i [see (2.4)] and 
m is the mass used in H° [see (3.4)]. Lattice imperfec
tions also give rise to a perturbation22 where 

XF 2 =| E E C - t o J G - f r X ^ x , ) , (4.5) Bks,k,8,,k„s„ = - ^ - A k + k , + k < , Z *.<W, W 
t ? mn 3mN1/2 abc 

where the coefficient Ca6(x,-,Xy) are the corrections to X E 5 a k ( 0 x m x J x m ^ k ' , X m + k " - x « ) (4 11) 
the quadratic term in the potential energy expansion, mn 

the complete coefficients being Aab(xi—Xj)+Cab(xi,Xj). 
In general, Ca6(x*,xy) depends on the specific positions The quantity inside the curly brackets in (4.10) is just 
in the lattice of both the particles i and j , while #k«gk'. 'tyk'v t . Notice that 
Aah(xi—x3), which is included in H°, depends on their ft _ _ - R * (A IO\ 
relative displacement only. J W v . k " . " - » - * , - * . ' , - * » . " , (4.12) 

where the asterisk indicates complex conjugation. 
The Contribution from 'XVz The quartic term XS4' can be written with the aid of 

TT n 1A\ V f 11 +U • *U * « W * M / f ( 4 ' 7 ) a i l d ( 4 6 ) P n ( 4 6 ) r e P l a C e Q ( x ^ ) - Q ( x i ) + X ~ X y 
From (2.14) it follows that the contribution of \V3 to by O (x•) — 0 ( x •)! as 

the average energy flux XSy' is 

XSV= (2F)-1{m-iEP(x i)XF3(x i) x 5 / ' = — ^ — £ £ 5«^(Xi,x,,x ro) 
* 2F3 !w */»» â c 

+ ( 2 m ) - 1 L [ Q ( x , ) - Q ( x i ) + x ~ x y ] X{Qa(xi)Q
b(xj)Q

c(xm)Pl(xi) 

X (^ ) - 1 [P (x0 2 AF 3 (x y ) ]}+H.c . (4.6) 

The form of XF3 suggests that one take 

-2ez(x,)e6(xy)Cc(xm)P«(x,) 

+2e z(xy)e&(xy)e c(xw)P a(x,)}+H.c. (4.13) 

The introduction of aks^ and aks yields 
1 

XF3(x;) = - E E 5a&c(x;,xy,xm) 1 
3 !*««&* X S 4 ' = — E BkSik'S',k 

X<2a(xi)G6(xy)<3c(xm). (4.7) TV kk'k»k'",..'."*'» 

Just as # ° , a quadratic function of the P(x;) and Q(x4), i—ifi2/ a>k'"S'" \1 / 2 

led to S°= S2°+S3
0, the contribution of XF3 to the flux X ( J 

can be written as [ 4 w ^v*.•<**"."' 

XSF '=XS3 '+XS4 ' , (4.8) X(aks-a^)(ak>s,-a-k>sJ)(ak'>s,,-a„k>,s,J) 

22 For convenience, the same parameter X is used to characterize . 
the strength of the different perturbations XF3, \T', and XF2 even X (ak">s"' + d-k"'s" *) f + H . C . , (4.14) 
though they are in reality all independent. 
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where 

**ks,k' s' ,k" s" ,k"' sr" 

1 
= Ak+k'+k"+k" 

3lmN 
' E ^k'S'6^k 

abc 

x E £o6c(o,xm,xwy<k'-x»»+k"'x»> 
mn 

X [ e k S
0 e k - ' S - ' + 2 e k s e k - ' S ' - a ( ^ k - x - - l ) ] . (4.15) 

The quantity inside the curly brackets in (4.14) is 
gk^k ' s ' fyk"^ '^^"^" . Notice that 

B ks.k's'.k' ' s".k"'«'" = B_: ks,—k' s',—k"s" ,—k"' &' •**. (4.16) 

The complete expression for the contribution of XV % 
to the flux is obtained by combining (4.8), (4.10), and 
(4.14). 

The Contributions from XT' and XV 2 

The effect of lattice imperfections on the part of the 
energy flux proportional to X will now be treated.22 I t 
can be deduced from (2.14) that the kinetic-energy 
perturbation XT' gives a contribution A S / to the 
average flux of the form 

xs^)k 
— 1 \ f_ dnti m+^dnti 

1 dnti 

m2 (m-\-dmi)td 
P(X;)P(X;)2 

+-L- -P(x,)F(x,) 

1 
+ — Z(QW-Q(x;)+X;-Xi) 

2m it 

dnti 1 1 
X -rlP(xiy,V(x}m+H.c, (4.17) 

m+bnii ih ) 

where V(x%) is the potential energy part of the harmonic 
Hamiltonian given in (3.18). The contribution of XV2 to 
the flux is given by an equation of the form of (4.6) 
with XVs(xi) replaced by 

XF2(x,.) = i E E C"*(x<,xy)e»(x<)e>(x,-). (4.18) 

These contributions to the flux are readily expressed as 
functions of the creation and annihilation operators, but 
the complete calculation will not be given here. How
ever, it will be shown that if the Hamiltonian is sepa
rated into parts H = H°+XHf in such a way that the 
perturbations XT' and XV2 are nondiagonal in the 
phonon representation, then the contributions of these 
perturbations to the flux are also nondiagonal. 

The conditions under which XT' and XV2 are non-
diagonal can be seen by transforming (4.3) and (4.5) to 

phonon variables, which gives 

XT' = \h E («k8+a_ka
+)(ak'fi'+a_k'fi'

t)(cok«cok'801/2 

kk' , ssf 

bnii 
X(ek.-ek'S') U ^ E pi(k+k')>xi 

a n d 
m+bnii 

(4.19) 

X F 2 = — E (aks—a. 
4 w kk',ss' 

.kS
+)(tfk'. 

X (cokscok'S')~1/2 E eksaek>s>b 

ab 

X £ { i V - 1 £ C*(xi, x i -x„ )e i ( k + k ' » - I -} r i k ' - I » . 
m i 

(4.20) 

Diagonal terms in the phonon representation can occur 
only when k = — k ' (and s=s'). The factors in curly 
brackets in (4.19) and (4.20) are zero for k = — k' when 
the dnti and Cah(xi,Xj) are chosen so that 

dnti 
i ^ E = 0 , (4.21) 

i m+8mi 
a n d 

N~1'ECab(xi,xi-xm) = 0. (4.22) 

A comparison of (4.21) with (4.4) indicates that condi
tion (4.21) can be satisfied by defining m as 

1 1 
~=iV-1E 
m i m-\-8mi 

1 

i Mi 
(4.23) 

Also, it is always possible to choose the Aah(xi—Xj) and 
Cab(xi,Xj) so that condition (4.22) is fulfilled [see dis
cussion following (4.5)]. If these conditions are not 
initially satisfied, they can be obtained by redefining m 
and the Ca6(xj,xy), and correcting the frequencies and 
polarization vectors determined by (3.8). Thus, it is 
always possible to separate the Hamiltonian into parts 
so that XT' and XV2 are nondiagonal in the representa
tion diagonalizing H°. 

The conditions (4.21) and (4.22) also cause the con
tributions of XT' and XV2 to the energy flux to be non-
diagonal. To show this, write out those parts of these 
contributions which are quadratic in the P(x») and 
Q(xi), these being the only parts which could give 
diagonal matrix elements. One obtains 

XS2
/=( ) E (ak,+a-kS

+)(ak '6 ' -a_k 'S>+) 
\8wFAk',8«' 

X 
/ C0ks \ * 

\a>k's'/ 
E ek,aek'S'6 

XE A W E- — e ^+v)-x i \A a h (x m ) 
m-\-bnii J 

•{N-1 E Cah(xi, x i-xTOy<k+k '>-*} 
i 

Xxmer*k ' -X-+H. c . (4,24) 
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Again, diagonal elements can occur only in terms with 
k——k\ but the coefficients of such terms are zero when 
conditions (4.21) and (4.22) are satisfied. Thus, it is 
seen that the separation of the Hamiltonian which 
makes XT' and Wz nondiagonal also makes their con
tributions to the flux nondiagonal. The significance of 
this is that nondiagonal terms correspond (classically) 
to oscillatory functions whose contributions to the 
transport of energy are of a smaller order than those of 
the (time-independent) diagonal terms. 

Other Contributions to the Flux 

An inspection of the general expression (2.14) for the 
energy flux shows that contributions proportional to X2 

will result from a combination of a kinetic energy and 
a potential energy perturbation. There are also con
tributions to the flux from higher powers in the potential 
energy expansion, which can be treated along essentially 
the same lines as the contribution from XF3. In particu
lar, a perturbation which is of nt\i power in the Q(x*)'s 
gives rise to nth and (w+l)s t power contributions to 
the energy flux, just as the cubic perturbation gave 
cubic and quartic contributions. The calculation of 
these higher order contributions is straightforward. 
However, they will not be considered further here. 

5. THE LOCAL ENERGY FLUX 

In the usual discussion of lattice thermal conduc
tivity, based on the Boltzmann equation, it is necessary 
to introduce a number operator N^s{x) which is a func
tion of position. Associated with this is an expression for 
the local energy flux of the form 

s ( x ) = X A rkS(x)^k*vks. (5.1) 
ks 

One method2 of justifying this point of view is to divide 
the lattice into small regions and identify s(x), for 
example, with the average energy flux (1.1) of the region 
containing x. This procedure, however, requires heu
ristic arguments whose rigorous justification is not 
readily seen. Another approach is to form wave packets 
of the plane-wave normal modes,3 but is is not clear 
exactly how these packets are to be formed. In this 
section the rigorous expression (2.12) for the local 
energy flux operator will be used to determine just what 
approximations are necessary to obtain an expression 
of the form (5.1) and to give a more precise meaning to 
the quantity Nks(x). 

First, those terms in the exact expression for the local 
flux analogous to AS' (the perturbation contribution to 
the flux) and S30 (which does not exist when the energy 
of the particles is identified with the lattice sites) will be 
neglected. One expects their contributions to be small for 
the reasons discussed in Sees. 3 and 4. Next, it will be 
assumed that 

h«l, (5.2) 

where h characterizes the interparticle force range, and 
I is descriptive of the localization of the operators H(x) 
and s(x) [see the discussion of (2.5)]. The interparticle 
force range comes into expression (2.12) for s(x) 
through [pi2,Vj] which is zero for |q — qy|>//?. The 
quantity A(x—q*)//n gives the order of the nth deriva
tive of A(x— qi) with respect to x [this can be seen by 
differentiating (2.7)]. From this it follows that the 
expansion in (2.12) is an expansion in powers of fo/l, so 
that with h<^l the first term in the series is a good 
approximation to the complete expansion. Thus, using 
the above approximations and introducing the P(x*) 
and Q(xi) into (2.12), one obtains 

1 1 
s2°(x) = — £ A ( x ~ x , ) ( x , - x i ) - [ P ( x , ) 2 , F ( x i ) ] . (5.3) 

2m a ifi 

The introduction of the creation and annihilation 
operators gives 

ifi Aok>sA
1/2 

s2°(x) = — L (#-k'S'+0/fc'S'+)(#ks— a_ks
+)( ) 

4W kk'.ss' \ C0ks / 

X L e-k'S'^kS
6 £ Aab(xm)xme-ik'Xm 

ab m 

XiN-1 Z A(x-x i )e« k - k ' ) -* '} . (5.4) 
i 

As suggested by (2.7), the function A(x—x*) will be 
taken to be 

A(x-X;) = 7r-3 /2 /-3exp(- |x-x,- |2 /72) . (5.5) 

With this the term in curly brackets in (5.4) can be 
written as 

1 / | x , - b | 2 \ 
E e x p l i | k - k ' | 2 / 2 + 2 ( k - k ' ) - x ) , 

NlT^P i V P / 

(5.6) 

where b = x + | i / 2 ( k — k ' ) . I t will now be assumed that 

a « k < Z , (5.7) 

where the lattice constant a gives the value of |xt— xy| 
when i and j are adjacent particles, and L characterizes 
the dimensions of the system being considered. With 
l^>a the sum over i in expression (5.6) can be replaced 
by an integration over Xj, and with Z«L the limits of 
integration can be taken to infinity. Carrying out the 
resulting integral one finds 

N-1 £ < A(x -x , ) e x p p ( k - k ' ) - x j 
- F ^ e x p ^ i l k - k ' l 2 / 2 ) e x p p ( k - k O - x ] . (5.8) 

The main contribution to (5.4) comes from those values 
of k and k' for which the function exp(—J|k—k'|2/2) is 
peaked, i.e., for values which satisfy |k—k' | <2/l. For 
such values and with a « / it follows from (3.8) and 
(3.23) that e_kv~— ek*' and vk 'S 'S^vk*' s , respectively. 
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Using these approximations in (5.4), one obtains 

1 
S 2 ° ( x ) = ] C ( a - k ' s ' + a k ' / X t f k s - a - k / ) 

kk'.ss' 2V 

X e x p ( - i | k - k ' | 2 / 2 ) e x p p ( k - k ' ) - x ] 

X^(wkS'COk'S01/22(vkS'S+Vk'S'S). (5.9) 
The terms in (5.9) with S5*s', which are analogous to 

^2,nd° discussed in Sec. 3, contain contributions from 
modes with different frequencies, and, thus, are rapidly 
oscillating functions whose time average is negligible. 
For this reason they will be neglected. [Of course, the 
terms being kept with s=s' but k ^ k ' also possess con
tributions from modes with different frequencies; how
ever, since the values of k and k' can be arbitrarily close 
(for large systems), the frequency difference oiks—cok's 

can be so small that the oscillations are no longer rapid. 
Although it is also possible for the difference ooks—cok&' 
with ST*S' to be very small, the associated terms in 
s2°(x) still do not contribute because then vkss ' is 
vanishingly small; see (3.28).] Neglecting terms with 
S5*s' and using (cokScok'S)

1/2^cok*, one obtains 

S2°(x) = L Nks(x)fiu>ksvks, (5.10) 
ks 

with 

1 
Nks(x) =—L(#kSWsexp[)'(k'—k)-x]+H.c.) 

2V *' 

X e x p ( - i | k - k ' | 2 Z 2 ) . (5.11) 

Here one has the expression for the local energy flux in 
the desired form together with an expression for the 
quantity Nks(x). The average over the system of (5.10) 
yields the usual expression (1.1) or (3.30) for the 
energy flux, since the volume integral of exp(i(k—k') • x) 
equals V8ktkr because of the periodic boundary 
conditions. 

The Conservation of Energy 

I t will now be shown that S20 (x) as given above satis
fies the equation for energy conservation, 

# ( x ) + V . s ( x ) = 0 , (2.1) 

in the same approximation that the result (5.10) is 
valid. To show this the energy density H(x) must first 
be expressed as a function of the creation and an
nihilation operators. By approximating the function 
A(x~Q(x f ) -Xi ) in Eq. (2.5) for H(x) with A ( x - x J 
and neglecting the perturbations, one obtains 

ff°(x) = E A ( x - x < ) 
i 

X ( ^ - + i E E A*&-xi)Q'(xi)QK*)) • (5-12) 
V 2m i ab / 

The transformation to the aks^ and akg with the aid of 
(5.8) and the approximations e_k'S-ek^— Sss

f and 
o>ks

2^a)k>so)ksc^a)ks
z/a)k>s yields 

H°(x) = Z( Nks(x)+—Ws. (5.13) 
k A 2 7 / 

Notice that the average over the volume of the system 
of this expression is just H°/V. 

A straightforward calculation making use of the 
creation and annihilation operators and Eq. (3.14) for 
H° leads to 

# k s ( x ) < i V k s ( x ) , # 0 ] M 

—i 
= S(<*>k'S — °>ks) 

2V k' 

X(flk«W« expp(k'—k)-x]—H.c.) 

X e x p ( - i | k - k ' | 2 Z 2 ) . (5.14) 

I t can also be shown that 

V7Yks(x) = — E ( k ' - k ) 
2V k' 

X (aks
+ak'« e x P p (k'—k) • x ] - H. c.) 

X e x p ( - i | k - k ' | 2 / 2 ) . (5.15) 

The use of these results to evaluate H°(x) and V-s2°(x) 
shows that for the conservation equation (2.1) to be 
satisfied one must have 

cok'S~coks = vks- ( k ' - k ) . (5.16) 

This condition is certainly satisfied to the approximation 
being considered, since VkS equals Vkuks and the differ
ence k—k' is very small in the region where 
exp(— \ I k—k' 12/2) is peaked. This verifies the assertion 
that S2°(x) satisfies a conservation equation in the same 
approximation that (5.10) is valid. 

6. CONCLUSIONS AND DISCUSSION 

The expressions for the energy flux, valid for all 
phases of matter, have been obtained from the require
ment that the local flux satisfy a conservation law. 
With the Hamiltonian expressed as H=H°-\-\H', where 
H° is the harmonic Hamiltonian for a lattice, one obtains 
contributions to the energy flux which are independent 
of the perturbation \Hf and contributions proportional 
to X and to X2. When expressed in terms of phonons, the 
perturbation independent part of the average flux sep
arates into 

S°=S 2 ) d
0 +S 2 ( n d

0 +S 3
0 , 

where S2,d° is the diagonal part of S° in the phonon 
representation, S2,nd° is nondiagonal and contains con
tributions from modes with the same wave vector but 
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different polarization directions, and S30 is a cubic func
tion of the creation and annihilation operators a^ 
and #k*. 

The diagonal part S2, / has the form of the usual 
expression (1.1) for the lattice energy flux. Diagonal 
elements in the phonon representation correspond to 
time-independent terms in the classical harmonic 
approximation, while nondiagonal terms correspond to 
oscillatory functions. Thus, when the anharmonic 
energy is small, one expects the diagonal element to give 
the major contribution to the (time-averaged) transport 
of energy. 

When one uses the cubic term in the potential energy 
expansion as a perturbation, its contribution to the flux 
has the form 

xs^xsz+xs/, 
where \Ss and XS/ are, respectively, cubic and quartic 
functions of the operators a^ and aks. Similarly, an nth 
power term in the potential energy expansion yields nth. 
and (n+l)st power contributions to the flux. Since the 
product of an even number of creation and annihilation 
operators can possess diagonal matrix elements, there 
are in general diagonal contributions to the flux from 
all powers in the expansion of the Hamiltonian. 

Neither S30 nor the (n+l)st power contribution from 
the nth power perturbation would occur, had the energy 
associated with the various particles been identified with 

their lattice sites instead of with their actual positions. 
Because of this one expects these contributions to be 
significant only when the amplitudes of the particle 
displacements are appreciable compared to the spacing 
between particles, such as one anticipates at tempera
tures near the melting point. Such contributions are, of 
course, of primary importance when the particle dis
placements are very large, as in a gas. 

I t has also been shown that the general expression for 
the local energy flux s(x) is given approximately by 

s(x) = ]C Nks(x)fiuksvks, 
k.8 

where A ^ s M contains contributions from a packet of 
normal modes with a spread of wave vectors centered 
about the value k. To obtain this result it is required 
that the macroscopically small volume elements over 
which local properties are averaged be large compared 
to the interparticle force range and contain many 
particles. 
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